Skip to main content

Targeted, Multifunctional Hydrogel Nanoparticles for Imaging and Treatment of Cancer

  • Chapter
  • First Online:
Multifunctional Nanoparticles for Drug Delivery Applications

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Use of nanoparticles as a platform for carrying drugs, image contrast agents, or both has been considered to be a revolutionary approach for cancer diagnosis and therapy. Especially, hydrogel nanoparticles have drawn considerable interest as a very promising platform because of their favorable characteristics, based on the conceptual combination of nanoparticle and hydrogel. Nanoparticles can carry high payloads and target selectively to tumors because of their nanosize and engineering capability. The hydrogel characteristics, including hydrophilicity and reversible, stimuli-responsive swelling/deswelling, enable long plasma circulation times and controlled drug release. Hydrogel nanoparticles made of natural, synthetic, or combinations of both polymers have been designed, prepared, and applied for treatment and imaging of cancer with various therapeutic and imaging modalities. This chapter describes various types of hydrogel nanoparticles developed for cancer applications and their preparation methods and analyzes their characteristics which make them suitable for cancer therapy and imaging. It also presents selected applications of hydrogel nanoparticles for imaging (for diagnosis and surgical delineation) and therapeutic modalities as well as for integrated therapy and imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society (2010) Cancer facts & figures 2010. American Cancer Society, Atlanta

    Google Scholar 

  2. Nimsky C, Ganslandt O, Kober H, Buchfelder M, Fahlbusch R (2001) Intraoperative magnetic resonance imaging combined with neuronavigation: a new concept. Neurosurgery 48:1082–1089

    Article  Google Scholar 

  3. Izquierdo MA, Scheffer GL, Flens MJ, Shoemaker RH, Rome LH, Scheper RJ (1996) Relationship of LRP-human major vault protein to in vitro and clinical resistance to anticancer drugs. Cytotechnology 19:191–197

    Article  Google Scholar 

  4. Gatmaitan ZC, Arias IM (1993) Structure and function of P-glycoprotein in normal liver and small intestine. Adv Pharmacol 24:77–97

    Article  Google Scholar 

  5. Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2:750–763

    Article  Google Scholar 

  6. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  Google Scholar 

  7. Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker JR, Holl MMB (2007) The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol 14:107–115

    Article  Google Scholar 

  8. Harrell JA, Kopelman R (2000) Biocompatible probes measure intracellular activity. Biophotonics Int 7:22–24

    Google Scholar 

  9. Xu H, Buck SM, Kopelman R, Philbert MA, Brasuel M, Ross B, Rehemtulla A, Festschrift J (2004) Photo-excitation based nano-explorers: chemical analysis inside live cells and photodynamic therapy. Isr J Chem 44:317–337

    Article  Google Scholar 

  10. Ross B, Rehemtulla A, Koo Y-EL, Reddy R, Kim G, Behrend C, Buck S, Schneider RJ, Philbert MA, Weissleder R, Kopelman R (2004) Photonic and magnetic nanoexplorers for biomedical use: from subcellular imaging to cancer diagnostics and therapy. Proc SPIE 5331:76–83

    Article  Google Scholar 

  11. Kopelman R, Koo YL, Philbert M, Moffat BA, Reddy GR, McConville P, Hall DE, Chenevert TL, Bhojani MS, Buck SM, Rehemtulla A, Ross BD (2005) Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer. J Magn Magn Mater 293:404–410

    Article  Google Scholar 

  12. Reddy GR, Bhojani MS, McConville P, Moody J, Moffat BA, Hall DE, Kim G, Koo Y-E, Woolliscroft MJ, Sugai JV, Johnson TD, Philbert MA, Kopelman R, Rehemtulla A, Ross BD (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 12:6677–6686

    Article  Google Scholar 

  13. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649

    Article  Google Scholar 

  14. Kashyap N, Kumar N, Kumar MNVR (2005) Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carrier Syst 22:107–149

    Article  Google Scholar 

  15. Koo Y-EL, Reddy GR, Bhojani M, Schneider R, Philbert MA, Rehemtulla A, Ross BD, Kopelman R (2006) Brain cancer diagnosis and therapy with nano-platforms. Adv Drug Deliv Rev 58:1556–1577

    Article  Google Scholar 

  16. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339

    Article  Google Scholar 

  17. Koo Lee Y-E, Smith R, Kopelman R (2009) Nanoparticle PEBBLE sensors in live cells and in vivo. Annu Rev Anal Chem 2:57–76

    Article  Google Scholar 

  18. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879

    Article  Google Scholar 

  19. Wu Y, MacKay JA, McDaniel JR, Chilkoti A, Clark RL (2009) Fabrication of elastin-like polypeptide nanoparticles for drug delivery by electrospraying. Biomacromolecules 10:19–24

    Article  Google Scholar 

  20. Maitra A (1984) Determination of size parameters of water-aerosol OT-oil reverse micelles from their nuclear magnetic resonance data. J Phys Chem 88:5122–5125

    Article  Google Scholar 

  21. Munshi N, De TK, Maitra A (1997) Size modulation of polymeric nanoparticles under controlled dynamics of microemulsion droplets. J Colloid Interface Sci 190:387–391

    Article  Google Scholar 

  22. Bharali DJ, Sahoo SK, Mozumdar S, Maitra A (2003) Cross-linked polyvinylpyrrolidone nanoparticles: a potential carrier for hydrophilic drugs. J Colloid Interface Sci 258:415–423

    Article  Google Scholar 

  23. Ohya Y, Shiratani M, Kobayashi H, Ouchi T (1994) Release behavior of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. Pure Appl Chem A31:629–642

    Google Scholar 

  24. Pitarresi G, Craparo EF, Palumbo FS, Carlisi B, Giammona G (2007) Composite nanoparticles based on hyaluronic acid chemically cross-linked with α, β-polyaspartylhydrazide. Biomacromolecules 8:1890–1898

    Article  Google Scholar 

  25. Lee H, Mok H, Lee S, Oh Y-K, Park TG (2007) Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. J Control Release 119:245–252

    Article  Google Scholar 

  26. Khdair A, Gerard B, Handa H, Mao G, Shekhar MPV, Panyam J (2008) Surfactant-polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy. Mol Pharm 5:795–807

    Article  Google Scholar 

  27. Jain A, Jain SK (2008) In vitro and cell uptake studies for targeting of ligand anchored nanoparticles for colon tumors. Eur J Pharm Sci 35:404–416

    Article  Google Scholar 

  28. Zhang H, Mardyani S, Chan WCW, Kumacheva E (2006) Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics. Biomacromolecules 7:1568–1572

    Article  Google Scholar 

  29. Zhou X, Liu B, Yu X, Zha X, Zhang X, Chen Y, Wang X, Jin Y, Wu Y, Chen Y, Shan Y, Chen Y, Liu J, Kong W, Shen J (2007) Controlled release of PEI/DNA complexes from mannose-bearing chitosan microspheres as a potent delivery system to enhance immune response to HBV DNA vaccine. J Control Release 121:200–207

    Article  Google Scholar 

  30. Boddohi S, Moore N, Johnson PA, Kipper MJ (2009) Polysaccharide-based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan. Biomacromolecules 10:1402–1409

    Article  Google Scholar 

  31. Duceppe N, Tabrizian M (2009) Factors influencing the transfection efficiency of ultra low molecular weight chitosan/hyaluronic acid nanoparticles. Biomaterials 30:2625–2631

    Article  Google Scholar 

  32. Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P (1993) Development of a new drug carrier made from alginate. J Pharm Sci 82:912–917

    Article  Google Scholar 

  33. Sarmento B, Ribeiro AJ, Veiga F, Ferreira DC, Neufeld RJ (2007) Insulin-loaded nanoparticles are prepared by alginate ionotropic pregelation followed by chitosan polyelectrolyte complexation. J Nanosci Nanotechnol 7:2833–2841

    Article  Google Scholar 

  34. Ahmad Z, Sharma S, Khuller GK (2007) Chemotherapeutic evaluation of alginate nanoparticle-encapsulated azole antifungal and antitubercular drugs against murine tuberculosis. Nanomedicine 3:239–243

    Google Scholar 

  35. Besheer A, Hause G, Kressler J, Maeder K (2007) Hydrophobically modified hydroxyethyl starch: synthesis, characterization, and aqueous self-assembly into nano-sized polymeric micelles and vesicles. Biomacromolecules 8:359–367

    Article  Google Scholar 

  36. Hornig S, Heinze T (2008) Efficient approach to design stable water-dispersible nanoparticles of hydrophobic cellulose esters. Biomacromolecules 9:1487–1492

    Article  Google Scholar 

  37. Akiyoshi K, Deguchi S, Moriguchi N, Yamaguchi S, Sunamoto J (1993) Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules 26:3062–3068

    Article  Google Scholar 

  38. Kuroda K, Fujimoto K, Sunamoto J, Akiyoshi K (2002) Hierarchical self-assembly of hydrophobically modified pullulan in water: gelation by networks of nanoparticles. Langmuir 18:3780–3786

    Article  Google Scholar 

  39. Choi KY, Lee S, Park K, Kim K, Park JH, Kwon IC, Jeong SY (2008) Preparation and characterization of hyaluronic acid-based hydrogel nanoparticles. J Phys Chem Solids 69:1591–1595

    Article  Google Scholar 

  40. Lee H, Ahn C-H, Park TG (2009) Poly[lactic-co-(glycolic acid)]-grafted hyaluronic acid copolymer micelle nanoparticles for target-specific delivery of doxorubicin. Macromol Biosci 9:336–342

    Article  Google Scholar 

  41. Yadav AK, Mishra P, Mishra AK, Mishra P, Jain S, Agrawal GP (2007) Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin. Nanomedicine 3:246–257

    Google Scholar 

  42. Yadav AK, Mishra P, Jain S, Mishra P, Mishra AK, Agrawal GP (2008) Preparation and characterization of HA–PEG–PCL intelligent core–corona nanoparticles for delivery of doxorubicin. J Drug Target 16:464–478

    Article  Google Scholar 

  43. Westedt U, Kalinowski M, Wittmar M, Merdan T, Unger F, Fuchs J, Schäller S, Bakowsky U, Kissel T (2007) Poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) nanoparticles for local delivery of paclitaxel for restenosis treatment. J Control Release 119:41–51

    Article  Google Scholar 

  44. Vinogradov SV, Tatiana KTK, Kabanov AV (2002) Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54:135–147

    Article  Google Scholar 

  45. Nagahama K, Mori Y, Ohya Y, Ouchi T (2007) Biodegradable nanogel formation of polylactide-grafted dextran copolymer in dilute aqueous solution and enhancement of its stability by stereocomplexation. Biomacromolecules 8:2135–2141

    Article  Google Scholar 

  46. Oh JK, Lee DI, Park JM (2009) Biopolymer-based microgels/nanogels for drug delivery applications. Prog Polym Sci 34:1261–1282

    Article  Google Scholar 

  47. Huang G, Gao J, Hu ZB, John JVS, Ponder BC, Moro D (2004) Controlled drug release from hydrogel nanoparticle networks. J Control Release 94:303–311

    Article  Google Scholar 

  48. Vihola H, Laukkanen A, Hirvonen J, Tenhu H (2002) Binding and release of drugs into and from thermosensitive poly(N-vinyl caprolactam) nanoparticles. Eur J Pharm Sci 16:69–74

    Article  Google Scholar 

  49. Bodnar M, Hartmann JF, Borbely J (2006) Synthesis and study of cross-linked chitosan-N-poly(ethylene glycol) nanoparticles. Biomacromolecules 11:3030–3036

    Article  Google Scholar 

  50. Shen X, Zhang L, Jiang X, Hu Y, Guo J (2007) Reversible surface switching of nanogel triggered by external stimuli. Angew Chem Int Ed 46:7104–7107

    Article  Google Scholar 

  51. Coester CJ, Langer K, Von Briesen H, Kreuter J (2000) Gelatin nanoparticles by two step desolvation a new preparation method, surface modifications and cell uptake. J Microencapsul 17:187–193

    Article  Google Scholar 

  52. Maham A, Tang Z, Wu H, Wang J, Lin Y (2009) Protein-based nanomedicine platforms for drug delivery. Small 5:1706–1721

    Article  Google Scholar 

  53. Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782

    Article  Google Scholar 

  54. Hah HJ, Kim G, Koo Lee Y-E, Orringer DA, Sagher O, Philbert MA, Kopelman R (2011) Methylene blue-conjugated hydrogel nanoparticles and tumor-cell targeted photodynamic therapy. Macromol Biosci 11:90–99

    Article  Google Scholar 

  55. Montet X, Funovics M, Montet-Abou K, Weissleder R, Josephson L (2006) Multivalent effects of RGD peptides obtained by nanoparticle display. J Med Chem 49:6087–6093

    Article  Google Scholar 

  56. Kataoka K, Miyazaki H, Bunya M, Okano T, Sakurai Y (1998) Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on-off regulation of insulin release. J Am Chem Soc 120:12694–12695

    Article  Google Scholar 

  57. Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769

    Article  Google Scholar 

  58. Bromberg LE, Ron ES (1998) Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv Drug Deliv Rev 31:197–221

    Article  Google Scholar 

  59. Tanaka T, Nishio I, Sun S-T, Ueno-Nishio S (1982) Collapse of gels in an electric field. Science 218:467–469

    Article  Google Scholar 

  60. Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346:345–347

    Article  Google Scholar 

  61. Mamada A, Tanaka T, Kungwatchakun D, Irie M (1990) Photoinduced phase-transition of gel. Macromolecules 23:1517–1519

    Article  Google Scholar 

  62. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    Article  Google Scholar 

  63. Wang J, Gan D, El-Sayed MA (2001) Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions. J Am Chem Soc 123:11284–11289

    Article  Google Scholar 

  64. http://www.abraxane.com/

  65. Service RF (2010) Nanotechnology: nanoparticle Trojan horses gallop from the lab into the clinic. Science 330:314–315

    Article  Google Scholar 

  66. Winer I, Wang S, Koo Lee Y-E, Fan W, Gong Y, Burgos-Ojeda D, Spahlinger G, Kopelman R, Buckanovich RJ (2010) F3-targeted cisplatin-hydrogel nanoparticles as an effective therapeutic that targets both murine and human ovarian tumor endothelial cells in vivo. Cancer Res 70:8674–8683

    Article  Google Scholar 

  67. Guowei D, Adriane K, Chen X, Jie C, Yinfeng L (2007) PVP magnetic nanospheres: biocompatibility, in vitro and in vivo bleomycin release. Int J Pharm 328:78–85

    Article  Google Scholar 

  68. Huang S-J, Sun S-L, Feng T-H, Sung K-H, Lui W-L, Wang L-F (2009) Folate-mediated chondroitin sulfate-Pluronic® 127 nanogels as a drug carrier. Eur J Pharm Sci 38:64–73

    Article  Google Scholar 

  69. Li X, Li R, Qian X, Ding Y, Tu Y, Guo R, Hu Y, Jiang X, Guo W, Liu B (2008) Superior antitumor efficiency of cisplatin-loaded nanoparticles by intratumoral delivery with decreased tumor metabolism rate. Eur J Pharm Biopharm 70:726–734

    Article  Google Scholar 

  70. Hidaka M, Kanematsu T, Ushio K, Sunamoto J (2006) Selective and effective cytotoxicity of folic acid-conjugated cholesteryl pullulan hydrogel nanoparticles complexed with doxorubicin in in vitro and in vivo studies. J Bioact Compat Polym 21:591–602

    Article  Google Scholar 

  71. Susa M, Iyer AK, Ryu K, Hornicek FJ, Mankin H, Amiji MM, Duan ZF (2009) Doxorubicin loaded polymeric nanoparticulate delivery system to overcome drug resistance in osteosarcoma. BMC Cancer 9:399

    Article  Google Scholar 

  72. Christian S, Pilch J, Akerman ME, Porkka K, Laakkonen P, Ruoslahti E (2003) Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol 163:871–878

    Article  Google Scholar 

  73. Huang Y, Shi H, Zhou H, Song X, Yuan S, Luo Y (2006) The angiogenic function of nucleolin is mediated by vascular endothelial growth factor and nonmuscle myosin. Blood 107:3564–3571

    Article  Google Scholar 

  74. Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173

    Article  Google Scholar 

  75. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465

    Google Scholar 

  76. Lee ES, Gao Z, Bae YH (2008) Recent progress in tumor pH targeting nanotechnology. J Control Release 132:164–170

    Article  Google Scholar 

  77. Park JH, Kwon S, Lee M, Chung H, Kim JH, Kim YS, Park RW, Kim IS, Seo SB, Kwon IC, Jeong SY (2006) Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: in vivo biodistribution and anti-tumor activity. Biomaterials 27:119–126

    Article  Google Scholar 

  78. Kim J-H, Kim Y-S, Park K, Lee S, Nam HY, Min KH, Jo HG, Park JH, Choi K, Jeong SY, Park R-W, Kim I-S, Kim K, Kwon IC (2008) Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J Control Release 127:41–49

    Article  Google Scholar 

  79. Zhao ZM, He M, Yin LC, Bao J, Shi L, Wang B, Tang C, Yin C (2009) Biodegradable nanoparticles based on linoleic acid and poly(beta-malic acid) double grafted chitosan derivatives as carriers of anticancer drugs. Biomacromolecules 10:565–572

    Article  Google Scholar 

  80. Ray D, Mohapatra DK, Mohapatra RK, Mohanta GP, Sahoo PK (2008) Synthesis and colon-specific drug delivery of a poly(acrylic acid-co-acrylamide)/MBA nanosized hydrogel. J Biomater Sci Polym Ed 19:1487–1502

    Article  Google Scholar 

  81. Na K, Lee KH, Bae YH (2004) pH-sensitivity and pH-dependent interior structural change of self-assembled hydrogel nanoparticles of pullulan acetate/oligo-sulfonamide conjugate. J Control Release 97:513–525

    Google Scholar 

  82. Na K, Lee ES, Bae YH (2007) Self-organized nanogels responding to tumor extracellular pH: pH-dependent drug release and in vitro cytotoxicity against MCF-7 cells. Bioconjug Chem 18:1568–1574

    Article  Google Scholar 

  83. Zhang H-Z, Li X-M, Gao F-P, Liu L-R, Zhou Z-M, Zhang Q-Q (2010) Preparation of folate-modified pullulan acetate nanoparticles for tumor-targeted drug delivery. Drug Deliv 17:48–57

    Article  Google Scholar 

  84. Xu PS, Van Kirk EA, Murdoch WJ, Zhan YH, Isaak DD, Radosz M, Shen YQ (2006) Anticancer efficacies of cisplatin-releasing pH-responsive nanoparticles. Biomacromolecules 7:829–835

    Article  Google Scholar 

  85. Murthy N, Xu M, Schuck S, Kunisawa J, Shastri N, Frechet JM (2003) A macromolecular delivery vehicle for protein-based vaccines: acid-degradable protein-loaded microgels. Proc Natl Acad Sci USA 100:4995–5000

    Article  Google Scholar 

  86. Shi L, Khondee S, Linz TH, Berkland C (2008) Poly(N-vinylformamide) nanogels capable of pH-sensitive protein release. Macromolecules 41:6546–6554

    Article  Google Scholar 

  87. Fisher OZ, Peppas NA (2009) Polybasic nanomatrices prepared by UV-initiated photopolymerization. Macromolecules 42:3391–3398

    Article  Google Scholar 

  88. Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  Google Scholar 

  89. Fan L, Li F, Zhang H, Yukun Wang Y, Cheng C, Li X, Gu C-H, Qian Yang Q, Wu H, Zhang S (2010) Co-delivery of PDTC and doxorubicin by multifunctional micellar nanoparticles to achieve active targeted drug delivery and overcome multidrug resistance. Biomaterials 31:5634–5642

    Article  Google Scholar 

  90. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  Google Scholar 

  91. Oh JK, Siegwart DJ, Lee H, Sherwood G, Peteanu L, Hollinger JO, Kataoka K, Matyjaszewski K (2007) Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: synthesis, biodegradation, in vitro release, and bioconjugation. J Am Chem Soc 129:5939–5945

    Article  Google Scholar 

  92. Shah S, Pal A, Rajiv Gude R, Devi S (2010) Synthesis and characterization of thermo-responsive copolymeric nanoparticles of poly(methyl methacrylate-co-N-vinylcaprolactam). Eur Polym J 46:958–967

    Article  Google Scholar 

  93. van den Brom CR, Anac I, Roskamp RF, Retsch M, Jonas U, Menges B, Preece JA (2010) The swelling behaviour of thermoresponsive hydrogel/silica nanoparticle composites. J Mater Chem 20:4827–4839

    Article  Google Scholar 

  94. Morimoto N, Qiu X-P, Winnik FM, Akiyoshi K (2008) Dual stimuli-responsive nanogels by self-assembly of polysaccharides lightly grafted with thiol-terminated poly(N-isopropylacrylamide) chains. Macromolecules 41:5985–5987

    Article  Google Scholar 

  95. Ma LW, Liu MZ, Liu HL, Chen J, Cui D (2010) In vitro cytotoxicity and drug release properties of pH- and temperature-sensitive core-shell hydrogel microspheres. Int J Pharm 385:86–91

    Article  Google Scholar 

  96. Fan L, Wu H, Zhang H, Li F, Yang T-H, Gu C-H, Yang Q (2008) Novel super pH-sensitive nanoparticles responsive to tumor extracellular pH. Carbohydr Polym 73:390–400

    Article  Google Scholar 

  97. Nezhadi SH, Choong PFM, Lotfipour F, Dass CR (2009) Gelatin-based delivery systems for cancer gene therapy. J Drug Target 17:731–738

    Article  Google Scholar 

  98. Patil SD, Rhodes DG, Burgess DJ (2005) DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J 7:E61–E77

    Article  Google Scholar 

  99. Kommareddy S, Amiji M (2007) Antiangiogenic gene therapy with systemically administered sFlt-1 plasmid DNA in engineered gelatin-based nanovectors. Cancer Gene Ther 14:488–498

    Article  Google Scholar 

  100. Kaul G, Amiji M (2005) Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm Res 22:951–961

    Article  Google Scholar 

  101. Susa M, Iyer AK, Ryu K, Choy E, Hornicek FJ, Mankin H, Milane L, Amiji MM, Duan Z (2010) Inhibition of ABCB1 (MDR1) expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma. PLoS One 5:e10764

    Article  Google Scholar 

  102. Naeye B, Raemdonck K, Remaut K, Sproat B, Demeester J, De Smedt SC (2010) PEGylation of biodegradable dextran nanogels for siRNA delivery. Eur J Pharm Sci 40:342–351

    Article  Google Scholar 

  103. Dickerson EB, Blackburn WH, Smith MH, Kapa LB, Lyon LA, McDonald JF (2010) Chemosensitization of cancer cells by siRNA using targeted nanogel delivery. BMC Cancer 10:10

    Article  Google Scholar 

  104. Day AJ, Prestwich GD (2002) Hyaluronan-binding proteins: tying up the giant. J Biol Chem 277:4585–4588

    Article  Google Scholar 

  105. Ossipov DA (2010) Nanostructured hyaluronic acid-based materials for active delivery to cancer. Expert Opin Drug Deliv 7:681–703

    Article  Google Scholar 

  106. Cohen JA, Beaudette TT, Tseng WW, Bachelder EM, Mende I, Engleman EG, Frechet JMJ (2009) T-cell activation by antigen-loaded pH-sensitive hydrogel particles in vivo: the effect of particle size. Bioconjug Chem 20:111–119

    Article  Google Scholar 

  107. Fisher O, Kim T, Dietz S, Peppas NA (2009) Enhanced core hydrophobicity, functionalization and cell penetration of polybasic nanomatrices. Pharm Res 26:51–60

    Article  Google Scholar 

  108. Hu Y, Litwin T, Nagaraja AR, Kwong B, Katz J, Watson N, Irvine DJ (2007) Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles. Nano Lett 7:3056–3064

    Article  Google Scholar 

  109. Hasegawa K, Noguchi Y, Koizumi F, Uenaka A, Tanaka M, Shimono M, Nakamura H, Shiku H, Gnjatic S, Murphy R, Hiramatsu Y, Old LJ, Nakayama E (2006) In vitro stimulation of CD8 and CD4 T cells by dendritic cells loaded with a complex of cholesterol-bearing hydrophobized pullulan and NYESO-1 protein: identification of a new HLA-DR15-binding CD4 T-cell epitope. Clin Cancer Res 12:1921–1927

    Article  Google Scholar 

  110. Kawabata R, Wada H, Isobe M, Saika T, Sato S, Uenaka A, Miyata H, Yasuda T, Doki Y, Noguchi Y, Kumon H, Tsuji K, Iwatsuki K, Shiku H, Ritter G, Murphy R, Hoffman E, Old LJ, Monden M, Nakayama E (2007) Antibody response against NY-ESO-1 in CHPNY-ESO-1 vaccinated patients. Int J Cancer 120:2178–2184

    Article  Google Scholar 

  111. Shimizu T, Kishida T, Hasegawa U, Ueda Y, Imanishi J, Yamagishi H, Akiyoshi K, Otsuji E, Mazda O (2008) Nanogel DDS enables sustained release of IL-12 for tumor immunotherapy. Biochem Biophys Res Commun 367:330–335

    Article  Google Scholar 

  112. Severino D, Junqueira HC, Gugliotti M, Gabrielli DS, Baptista MS (2003) Influence of negatively charged interfaces on the ground and excited state properties of methylene blue. Photochem Photobiol 77:459–468

    Article  Google Scholar 

  113. Tanielian C, Heinrich G (1995) Effect of aggregation on the hematoporphyrin-sensitized production of singlet molecular oxygen. Photochem Photobiol 61:131–133

    Article  Google Scholar 

  114. Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776:86–107

    Google Scholar 

  115. Tang W, Xu H, Park EJ, Philbert MA, Kopelman R (2008) Encapsulation of methylene blue in polyacrylamide nanoparticle platforms protects its photodynamic effectiveness. Biochem Biophys Res Commun 369:579–583

    Article  Google Scholar 

  116. Tang W, Xu H, Kopelman R, Philbert MA (2005) Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms. Photochem Photobiol 81:242–249

    Article  Google Scholar 

  117. Gao D, Agayan RR, Xu H, Philbert MA, Kopelman R (2006) Nanoparticles for two-photon photodynamic therapy in living cells. Nano Lett 6:2383–2386

    Article  Google Scholar 

  118. Gao D, Xu H, Philbert MA, Kopelman R (2007) Ultrafine hydrogel particles: synthetic approach and therapeutic application in living cells. Angew Chem 46:2224–2227

    Article  Google Scholar 

  119. Chen K, Preuß A, Hackbarth S, Wacker M, Langer K, Röder B (2009) Novel photosensitizer-protein nanoparticles for photodynamic therapy: photophysical characterization and in vitro investigations. J Photochem Photobiol B 96:66–74

    Article  Google Scholar 

  120. Rodrigues MMA, Simioni AR, Primo FL, Siqueira-Moura MP, Morais PC, Tedesco AC (2009) Preparation, characterization and in vitro cytotoxicity of BSA-based nanospheres containing nanosized magnetic particles and/or photosensitizer. J Magn Magn Mater 321:1600–1603

    Article  Google Scholar 

  121. Deda DK, Uchoa AF, Carita E, Baptista MS, Toma HE, Araki K (2009) A new micro/nanoencapsulated porphyrin formulation for PDT treatment. Int J Pharm 376:76–83

    Article  Google Scholar 

  122. Khdair A, Handa H, Mao G, Panyam J (2009) Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro. Eur J Pharm Biopharm 71:214–222

    Article  Google Scholar 

  123. Gabrielli D, Belisle E, Severino D, Kowaltowski AJ, Baptista MS (2004) Binding, aggregation and photochemical properties of methylene blue in mitochondrial suspensions. Photochem Photobiol 79:227–232

    Article  Google Scholar 

  124. Koo Lee Y-E, Kopelman R (2010) Multifunctional nanoparticles for targeted imaging and therapy of cancer. In: Bao Y, Dattelbaum AM, Tracy JB, Yin Y (eds) Multifunctional nanoparticle systems—coupled behavior and applications. Mat Res Soc Sym Proc 1257, 1257-O07-02

    Google Scholar 

  125. Song H-C, Na K, Park KH, Shin C-H, Bom H-S, Kang D, Kim S, Lee ES, Lee DH (2006) Intratumoral administration of rhenium-188-labeled pullulan acetate nanoparticles (PAN) in mice bearing CT-26 cancer cells for suppression of tumor growth. J Microbiol Biotechnol 16:1491–1498

    Google Scholar 

  126. Hallahan D, Geng L, Qu S, Scarfone C, Giorgio T, Donnelly E, Gao X, Clanton J (2003) Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels. Cancer Cell 3:63–74

    Article  Google Scholar 

  127. Moffat BA, Reddy GR, McConville P, Hall DE, Chenevert TL, Kopelman RR, Philbert M, Weissleder R, Rehemtulla A, Ross BD (2003) A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI. Mol Imaging 2:324–332

    Article  Google Scholar 

  128. Ma H, Shiraishi K, Minowa T, Kawano K, Yokoyama M, Hattori Y, Maitani Y (2010) Accelerated blood clearance was not induced for a gadolinium-containing PEG-poly(L-lysine)-based polymeric micelle in mice. Pharm Res 27:296–302

    Article  Google Scholar 

  129. Banerjee T, Singh AK, Sharma RK, Maitra AN (2005) Labeling efficiency and biodistribution of Technetium-99m labeled nanoparticles: interference by colloidal tin oxide particles. Int J Pharm 289:189–195

    Article  Google Scholar 

  130. Sun G, Hagooly A, Xu J, Nystrom AM, Li ZC, Rossin R, Moore DA, Wooley KL, Welch MJ (2008) Facile, efficient approach to accomplish tunable chemistries and variable biodistributions for shell cross-linked nanoparticles. Biomacromolecules 9:1997–2006

    Article  Google Scholar 

  131. Sun G, Xu J, Hagooly A, Rossin R, Li Z, Moore DA, Hawker CJ, Welch MJ, Wooley KL (2007) Strategies for optimized radiolabeling of nanoparticles for in vivo PET Imaging. Adv Mater 19:3157–3162

    Article  Google Scholar 

  132. Orringer DA, Koo Y-EL, Chen T, Kim G, Hah H, Xu H, Wang S, Keep R, Philbert MA, Sagher O, Kopelman R (2009) In vitro characterization of a targeted, dye-loaded nanodevice for intraoperative tumor delineation. Neurosurgery 64:965–972

    Article  Google Scholar 

  133. Orringer DA, Sagher O, Kopelman R, Koo YE (2010) Dye-loaded nanoparticles. US patent US2010/0098637

    Google Scholar 

  134. Wu W, Aiello M, Zhou T, Berliner A, Banerjee P, Zhou S (2010) In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery. Biomaterials 31:3023–3031

    Article  Google Scholar 

  135. Kim JH, Kim YS, Kim S, Park JH, Kim K, Choi K, Chung H, Jeong SY, Park RW, Kim IS, Kwon IC (2006) Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel. J Control Release 111:228–234

    Article  Google Scholar 

  136. Yang SG, Chang JE, Shin B, Park S, Na K, Shim CK (2010) 99mTc-hematoporphyrin linked albumin nanoparticles for lung cancer targeted photodynamic therapy and imaging. J Mater Chem 20:9042–9046

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants 1R01EB007977 and R21/R33CA125297 (RK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raoul Kopelman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lee, YE.K., Kopelman, R. (2012). Targeted, Multifunctional Hydrogel Nanoparticles for Imaging and Treatment of Cancer. In: Svenson, S., Prud'homme, R. (eds) Multifunctional Nanoparticles for Drug Delivery Applications. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2305-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2305-8_11

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-2304-1

  • Online ISBN: 978-1-4614-2305-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics